# | Xi | Xd | Fxi | Fxd | Nuevo Xm | Error |
---|---|---|---|---|---|---|
1 | -3 | -2 | -14 | 6 | -2.5 | -0.5 |
2 | -2.5 | -2 | -2.125 | 6 | -2.25 | -0.25 |
3 | -2.5 | -2.25 | -2.125 | 2.359375 | -2.375 | -0.125 |
4 | -2.5 | -2.375 | -2.125 | 0.228515625 | -2.4375 | -0.0625 |
5 | -2.4375 | -2.375 | -0.919677734375 | 0.228515625 | -2.40625 | -0.03125 |
6 | -2.40625 | -2.375 | -0.33853149414062 | 0.228515625 | -2.390625 | -0.015625 |
7 | -2.390625 | -2.375 | -0.053256988525391 | 0.228515625 | -2.3828125 | -0.0078125 |
8 | -2.390625 | -2.3828125 | -0.053256988525391 | 0.088065624237061 | -2.38671875 | -0.00390625 |
9 | -2.390625 | -2.38671875 | -0.053256988525391 | 0.017513573169708 | -2.388671875 | -0.001953125 |
10 | -2.388671875 | -2.38671875 | -0.017844371497631 | 0.017513573169708 | -2.3876953125 | -0.0009765625 |
11 | -2.3876953125 | -2.38671875 | -0.00015856791287661 | 0.017513573169708 | -2.38720703125 | -0.00048828125 |
12 | -2.3876953125 | -2.38720703125 | -0.00015856791287661 | 0.0086792100919411 | -2.387451171875 | -0.000244140625 |
13 | -2.3876953125 | -2.387451171875 | -0.00015856791287661 | 0.0042607479990693 | -2.3875732421875 | -0.0001220703125 |
14 | -2.3876953125 | -2.3875732421875 | -0.00015856791287661 | 0.0020511967759376 | -2.3876342773438 | -6.103515625E-5 |
Hemos terminado de analizar el método de la bisección, en este ejemplo con un error de 0.0001; se encuentra la última raiz(Xm): -2.3876647949219 con 14 iteracciones.